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A B S T R A C T  

Background and Objective: Sensory neurons have critical role in 
improvement of functional outcome of any neuroprotective strategy. The herbal 
medicine Nepeta menthoides has been reported to have anti-apoptotic effect on 
axotomized spinal motoneurons. In the present study, the putative 
neuroprotective effect of Nepeta menthoides on the axotomized dorsal root 
ganglion sensory neurons in neonate rats was investigated. 
Materials and Methods: In fifteen two-day-old rat neonates, the right sciatic 
nerve was transected. The animals were subdivided into two experimental 
groups receiving 250 and 500 mg/kg of Nepeta menthoides and a control group 
treated with the normal saline as the vehicle for three days following the 
axotomy. At the fourth day the neonates were sacrificed and the L5 dorsal root 
ganglions of both sides were dissected and prepared for morphometrical cell 
count and TUNEL assay.  
Results: In the control group, four days following axotomy, 38.51% of dorsal 
root ganglion sensory neurons were lost. Administration of 250 and 500 mg/kg 
of Nepeta menthoides for three days significantly reduced the cell loss to 24.64% 
and 21.69%, respectively. The findings of TUNEL assay in control group 
indicated that axotomy significantly increased the apoptotic index from 3.93% to 
10.8%, but in both experimental groups the difference of the reduced percentage 
of apoptotic cells (the apoptotic index) between intact and axotomized sides was 
insignificant.  
Conclusion: Nepeta menthoides through attenuating the apoptotic cell death 
can induce neuroprotective effect on axotomized dorsal root ganglion sensory 
neurons. 
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1. Introduction 
he term neuroprotection can be 
applied to any treatment strategy 
preventing loss of neurons, which is 
likely to be generic for all harmful 
factors and neurodegenerative 

disorders (1), and must be induced before 
initiation of neuronal loss and appearance of 
clinical signs (2). Recent studies express the role 

of apoptosis versus necrosis in neuronal cell 
death. These two types of cell death, which share 
common signal transduction pathways, may be 
induced by the same stimulators (3). Since 
apoptosis is a more delayed event, its prevention 
can be a putative neuroprotection strategy. 

Apoptosis also called  programmed  cell  death,  
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roots in a Greek word meaning “falling of the 
leaves" (4). During embryonic development, 
apoptosis plays an important role in shaping and 
improving different organs of the body, and after 
birth the balance between the processes of 
mitosis and apoptosis maintains the stability of 
cell turnover. Early apoptosis happens in 
neuronal pathologies including trauma, ischemic 
and neurodegenerative diseases such as 
Parkinson’s, Alzheimer's and Huntington 
Diseases (5-7). 

Apoptosis morphologically starts in the nucleus 
as chromatin condensation. It changes to sharp 
and prominent features attached to the nuclear 
membrane as dense crescent-like masses. This 
process will eventually lead to a reduction in 
nuclear volume. Parallel to the changes in the cell 
nucleus, also the cytoplasm becomes dense. Cell 
size diminishes and cell membrane becomes 
convoluted by protuberances giving the cell a 
“star-like " appearance. Apoptotic cells finally 
disintegrate into apoptotic bodies composed of 
chromatin and membrane organelles, which will 
be ingested by macrophages and neighboring 
cells and removed from the tissue (4, 8). 

There are many known natural and chemical 
compounds, such as hormones and 
pharmacological drugs, with claimed 
neuroprotective effects. However, because of 
considerations such as unwanted side effects, 
availability and effectiveness, there has been 
considerable interest in investigating the 
neuroprotective capacity of new agents such as 
herbal medicines.  

The genus Nepeta from the family of 
Lamiaceae comprises about 400 species. Most of 
them grow wild in Central and Southern Europe, 
North Africa and Central and Southern Asia, and 
due to their antispasmodic, diuretic, antiseptic, 
antitussive, antiasthmatic and febrifuge activities, 
are widely used in traditional medicine (9). The 
therapeutic effect of Nepeta species are usually 
attributed to their essential oils and flavonoids. 
The majority of Nepeta species contain lipophilic 
flavonoids of the flavone group on their leaves 
(10), which due to their antioxidant and free 
radical scavenging capacity (11) can be the 
therapeutic components of these herbs. About 
half of the existing species of Nepeta has been 
recorded in Iran (12). One of them, the Nepeta 
menthoides Boiss and Bushe commonly known 

as Ostokhodus-e Khorasani (13) or briefly 
Ostokhodus, has been used as an herbal medicine 
to treat neural disorders such as epilepsy and 
melancholia in Iranian Traditional Medicine (14), 
and it has been reported to have neuroprotective 
effects on axotomized spinal motoneurons 
(15,16). Because of the claimed therapeutic 
capacities of Nepeta menthoides, in the present 
study we investigated its putative neuroprotective 
and anti-apoptotic effects on axotomized sensory 
neurons in dorsal root ganglion (DRG) of neonate 
rats. 

2. Materials and Methods 

2.1. Preparation of Nepeta menthoides    

Dried aerial parts of Nepeta menthoides were 
obtained from a local herbal medicine grocery in 
Mashhad/Iran and was confirmed by the Tehran 
Medical University Herbarium, where a voucher 
specimen was deposited under the reference 
number PMP-302. Then, 100 g of the powdered 
plant was macerated in 1000 ml of 80% ethanol 
for 48 hours and filtered by filter papers. After 
evaporating the solvent by a 50 °C hot tissue 
bath, a waxy extract with a yield of 16% (w/w) 
was obtained. The extract was diluted in normal 
saline, centrifuged for 15 min at 2000 rpm and 
filtered twice through sterile 0.2 µm filter papers 
(Whatman-Uk) to obtain a sterile stock which can 
be used to prepare the desired doses of 250 and 
500 mg/kg.  

2.2. Animal groups and surgery  

The animal care and experimental procedures 
were accomplished according to ethical 
guidelines of Ministry of Health and Medical 
Education of Iran. Fifteen two-day-old Sprague-
Dawley rat neonates (Razi Institute, Karaj, Iran) 
were housed under standard conditions 
accompanied by their mothers. The neonates 
were subdivided into two experimental and one 
control groups, each consisting of 5 animals. In 
all groups, the animals were anesthetized by 
hypothermia and under sterile conditions the 
right sciatic nerve was transected at the mid-thigh 
and approximately 2 mm of the distal stump was 
removed. Following axotomy, the neonates were 
returned to their mothers. The experimental 
groups (E1 and E2) received 250 and 500 mg/kg 
of Nepata menthoides, respectively, for three 
successive days starting at the day of axotomy, 



 

15 
 

Volume 2, Number 2, 2014 

and the control group received equal volume of 
saline as the dilution vehicle. The Nepeta 
menthoides was administered intraperitoneally 
and the first injection was performed quickly 
after recovery from the surgery and repeated at 
the same hour on the following days. On the 
fourth day, the animals were deeply anesthetized 
and transcardially perfused with cold heparin-
containing normal saline followed by 4% 
paraformaldehyde in 0.1 M phosphate buffer (pH 
7.4), and the L5-DRG of both sides were 
dissected through laminectomy and transferred to 
the same fixative for 24 h. In all samples the 
contralateral intact DRG was considered as an 
internal control.     

2.3. Cell count and apoptosis assessment   

The samples were processed and 8 µm 
transverse serial sections were obtained. Every 
tenth section was stained with Cresyl violet and 
used for morphometry and counting of sensory 
neurons in DRG of both sides of the spinal cord, 
where cells with a distinct nucleolus were 
counted at 400x magnification (Figure 1). In each 
group, the mean of sensory neurons in both 
DRGs and the mean percentage of sensory 
neurons reduction of axotomized side compared 
to the intact side were calculated. 

In all groups three sections, each next to one of 
the cell-counted sections, were selected for 
TUNEL assay study. 

 

 
 

Figure 1.A. Section of L5 dorsal root ganglion in the 
axotomized side of control group stained with cresyl 
fast violet. The arrows demonstrate large sensory 
neurons with a distinct pale nucleus and prominent 
nucleolus. Scale bar= 10µm.  

The selected tissue sections were dewaxed, 
rehydrated and permeabilized in freshly prepared 
0.1% Triton X-100, 0.1% sodium citrate (Sigma, 
Germany) for 8 min, washed in PBS and the 
terminal deoxynucleotidyltransferase-mediated 
dUTP nick end labeling (TUNEL) assay was 
performed as described in the In Situ Cell Death 
Detection Kit, POD instruction manual (Roche-
Germany). Briefly, samples were incubated in 50 
µl of TUNEL reaction mixture (5µl enzyme 
solution containing TdT from calf thymus in 
storage buffer, and 45 µl of label solution 
containing FITC-labeled dUTP nucleotides in 
reaction buffer) for 60 min at 37 °C in a 
humidified chamber and in the dark, covered 
with parafilm. Omission of TdT provided the 
negative control for the assay, and preincubation 
of cells with 10 µg/ml of DNase I in 50 mM Tris-
HCl, pH 7.4, 1 mM of MgCl2 and 1 mg/ml of 
BSA for 10 min at room temperature, served as 
positive control. Sections were washed with PBS 
and incubated for 30 min in a humidified 
chamber, at 37 °C with 50 µl of converter-POD 
(Anti-fluorescein antibody, Fab fragment from 
sheep, conjugated with horse-radish peroxidase). 
After rinsing in PBS, the samples were incubated 
for 10 min with 100 µl of diaminobenzidine 
substrate (Sigma, Germany) at 20-25 °C in the 
dark. Following washing again with PBS, the 
samples were mounted and analyzed under light 
microscope, where the apoptotic cells could be 
seen as highly condensed shrunk dark brown 
representations (Figure 2).  

 

 
 

Figure 2- A. TUNEL assay-prepared micrograph of L5 
dorsal root ganglion in the axotomized side of 
experimental group E1, treated with 250 mg/kg of 
Nepeta menthoides. The arrow demonstrates an 
apoptotic sensory neuron as a brown condensed 
feature. Scale bar= 10 µm.  
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Table 1. The results of morphometric cell count 
 Control group Experimental group 1 Experimental group 2 
Intact side 1591.6± 160.63* 1565± 217.53* 1519± 240.66* 
Axotomized side 978.6±168.43 1179.4± 176.17$ 1189.6± 166.2$ ἱ 
Cell loss percentage 38.51% 24.64% 21.69% 

The mean and standard deviation of sensory neurons in both L5-DRGs in different groups. The last row indicates the cell loss 
percentage of axotomized side compared to intact side in every group. *: indicates significant difference of values between 
axotomized and intact sides in each group (P<0.001). $: indicates significant differences between axotomized side of each of 
the experimental groups and the control group (P<0.05). ἱ : indicates insignificant difference between axotomized sides of 
both experimental groups. 

 

In each of the three sections of every group, the 
percentage of apoptotic cells to the total number 
of sensory neurons in DRG was determined, and 
their means was calculated which will be referred 
to as Apoptotic Index (AI). 

2.4. Statistical analysis 

The findings of cell count and apoptosis 
assessment were given as mean ± standard 
deviation and analyzed for statistical significance 
by one-way ANOVA and Tukey post hoc test, 
where the P<0.05 was assumed as significant. 

3. Results 
Our cell count study indicated that transection 

of sciatic nerve in control neonate rats induced an 
obvious reduction in the mean of related sensory 
neurons in the ipsilateral DRG, with a 38.5% cell 
loss of axotomized sensory neurons. Daily 
intraperitoneal administration of axotomized rats 
with 250 and 500 mg/kg of Nepeta menthoides 
for 3 days in experimental groups E1 and E2, 
decreased the cell loss percentage to 24.64% and 
21.69%, respectively. In control as well as in 
both experimental groups, the difference between 
the means of sensory neurons in axotomized and 

intact sides was significant. Comparison of 
means of spinal  sensory neurons  in  axotomized  
side  of  control and experimental groups, 
indicated significant differences between control 
and each of the experimental groups E1 and E2 
(P<0.001), but the difference between E1 and E2 
was insignificant. The results of cell count are 
summarized in Table 1 as mean ± standard 
deviation. 

To further determine if axotomy-induced cell 
death was caused by apoptosis, we used TUNEL 
assay and DAB as chromogen and calculated the 
percentage of apoptotic cells to the total number 
of cells as Apoptotic Index (AI). 

AI in the axotomized DRG of control, E1 and 
E2 groups was equal to 10.8, 8.65 and 7.76%, 
and in intact DRG of the same groups, it was 
3.93, 3.66 and 3.27%, respectively (Figure 3). 
The difference between AI of axotomized and 
intact sides in control group was statistically 
significant, whereas in both experimental groups 
it was insignificant (p<0.05). Comparison of AI 
between axotomized sides of control and 
experimental groups also indicated insignificant 
differences. 

 

 
Figure 3. The bars indicate the percentage of apoptotic cells to the total number of sensory neurons (AI) in both 
DRGs in control and experimental groups. Comparing the AI of axotomized and intact sides indicated a 
significant difference in control group, and insignificant differences in both experimental groups. Also 
comparison between the values of axotomized sides of control and experimental groups indicated no significant 
differences.   
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4. Discussion 
The significant difference between intact and 

axotomized sides in the control group approved 
the efficiency of our axotomy experimental 
model in inducing apoptotic cell death in sensory 
neurons of DRG, which has been reported 
repeatedly as a standard apoptosis-inducing 
model in motoneurons (17, 18). As presented in 
Table 1, in both experimental groups the 
difference between sensory neurons of intact and 
axotomized DRGs is significant, which implies 
that although Nepeta Menthoides can preserve 
some of the axotomized sensory neurons, still 
many of them will be lost. The difference 
between the means of sensory neurons of 
axotomized DRGs in control and each of the 
experimental groups E1 and E2 was significant 
whereas comparison of E1 and E2 showed no 
significant difference, which indicates that 250 
mg/kg of Nepeta Menthoides can be taken into 
account as a proper neuroprotective dose. 

The diminution of TUNEL-positive apoptotic 
cells in both experimental groups suggests that 
Nepeta menthoides may execute its 
neuroprotective effect through preventing 
apoptosis. Our findings demonstrated that in both 
groups the difference between the percentage of 
apoptotic features in intact and axotomized 
DRGs were considerably less than the difference 
between means of sensory neurons, in other 
words the percentage of apoptotic features was 
much less than the percentage of neural loss, 
which can be due to the fast phagocytosis and 
removal of apoptotic figures in the tissue by the 
neighboring cells. 

Many reports suggest the neuroprotective 
capacity of many hormones such as steroids (19), 
androgens (20), estrogens and progesterone (21, 
22) and some pharmacological agents such as 
isoflurane, Ketamine and lamotrigine (23, 24), 
anti-apoptotic antibiotic minocycline, 
neurotransmitter modulators such as remacemide, 
riluzole and paroxetine (7), neuroimmunophilin 
ligands such as tacrolimus, and dopamine 
agonists in Parkinson’s disease (6). It has also 
been reported that providing physical and 
biochemical situations such Hypothermia and 
alkalization has significant neuroprotective effect 
(25). 

It has been reported that androgens can prevent 
axotomy-induced cell death of facial 

motoneurons in hamster neonates (26). Although 
estrogen has been considered as a potent 
neuroprotectant in acute stroke, its physiological 
levels couldn't exert any neuroprotection and 
only in pharmacological doses at the time around 
an ischemic event has been demonstrated to have 
neuroprotective effects (27). It has been 
documented that progesterone through reducing 
inflammation, swelling and apoptosis may 
promote neuroregeneration (21). It has been 
indicated that in cerebral ischaemia models, the 
pharmacologic agents isoflurane and lamotrigine 
can improve the neurologic function and reduce 
the histologic damage of hippocampal CA1 and 
CA2 neurons (23). It has been reported that after 
brain injury sedative and anesthetic doses of 
Ketamine through modulating the apoptosis 
regulating proteins and interfering the 
inflammatory responses, can be a 
neuroprotectant, whereas higher doses can induce 
neurotoxicity (24). Because of the well-known 
roll of oxidative stress in apoptosis, many 
antioxidant drugs such as coenzyme Q10, 
creatine, α-lipoic acid and dicholoracetate, have 
been suggested to be helpful in managing 
neurodegenerative diseases (7). In spite of the 
anti-apoptotic and neuroprotective properties of 
the above-mentioned hormones and drugs, on 
account of their extensive unwanted systemic 
effects on different parts of the body other than 
the nervous system, their clinical application as a 
medical neuroprotective strategy may be highly 
limited, so looking for new neuroprotectants 
must still be considered as necessary.  

Recently, much attention has been paid to 
traditional and herbal medicine products such as 
green tea (28), Verbena officinalis Linn. (29), 
Jacaranda caroba (Vell.) (30), garlic (31), 
Viburnum tinus L. (32), soybean (33) and natural 
polyphenol antioxidants mangiferin and morin 
(34). Sutherland and his colleagues (2006) in a 
review on the neuroprotective mechanisms of 
green tea stated that the bioactive components 
catechins, can diminish oxidative stress and 
inflammatory responses and modulate apoptosis 
(28). Lai et al (2006) reported that aqueous 
extracts of V. officinalis significantly attenuated 
the β- amyloid peptide neurotoxicity on cortical 
neurons in vitro (29). Yu et al (2005) 
demonstrated that the oriental medicine Lycium 
barbarum through suppression of the c-Jun N-
terminal signaling pathway can prevent β-
amyloid-induced neurotoxicity and cell death on 



 

18 

cultured neurons (35). Li et al (2009) reported 
remarkable neuroprotective activities of several 
derivatives of a traditional Chinese medicinal 
plant which might prevent and slow down the 
neurodegeneration in Alzheimer's disease 
through concomitant inhibition of 
acetylcholinesterase, N- methyl-D-aspartate 
receptor, nitric oxide synthase, and amyloid 
precursor protein/ β-amyloid cascade (36). It has 
been reported that Curcuma longo can 
significantly ameliorate ethanol-induced memory 
deficits in mice by manipulationg NOS/NO 
signaling pathway (37). Qian et al indicated the 
neuroprotective effect of genistein, one of the 
active ingredients of soybean, in transient focal 
ischemia which may involve regulation of 
mitochondria-dependent apoptosis pathways and 
suppression of ROS-induced NF-κB activation 
(33). Cervantes and his colleagues reported that 
the present antioxidants in garlic extract may 
regulate ROS concentrations during ischemia, 
favor pro-survival pathways and attenuate 
mitochondrial dysfunction (31). In our last study, 
we indicated that daily intraperitoneal 
administration of axotomized rats with 500 
mg/kg of Nepeta menthoides attenuates axotomy-
induced apoptosis of spinal motoneurons (15). In 
the present study, administration of 250 mg/kg of 
Nepeta menthoides resulted in a significant 
protection of axotomized sensory DRG-neurons 
through prevention of apoptosis. Comparing the 
effective doses of Nepata menthoides in these 
two studies indicated that the neuroprotective 
effect of Nepeta menthoides on sensory neurons 
needs a lower dose than the spinal motoneurons. 
In the peripheral sensory or mixed nerve injuries, 
which are the commonest form of nervous system 
trauma, the clinical sensory outcome remains 
very poor, and because sensory feedback is a 
vital component of the normal control loop, the 
fine motor functions will be impaired too. 
Although various factors are implicated in the 
poor sensory outcome, the single most important 
factor is probably the death of a relatively 
prominent percentage of relevant primary sensory 
neurons. Also because of the sufficient 
similarities between the mechanisms underlying 
axotomy-induced neuronal death within the 
peripheral and central nervous systems, any 
treatment which protects primary sensory 
neurons may also have therapeutic implications 
for the management of traumatic brain, spinal 
cord, or brachial plexus injury (38). Because of 
the above-mentioned facts which prove the 

clinical importance of neuroprotective strategies 
in the sensory systems, we have designed the 
present study to investigate the neuroprotective 
capacity of Nepeta menthoides on the DRG 
sensory neurons. Although, the mechanism of the 
neuroprotective effects of Nepata menthoides has 
not been identified thoroughly, it can be 
attributed to the antioxidant and anti-
inflammatory properties of the included 
flavonoids which can reduce the axotomy-
induced apoptotic cell death of sensory neurons 
and protect the cells from the insult. Miceli et al 
reported the anti-inflammatory effect and radical 
scavenging activity of methanol extract of Nepeta 
sibthorpi (9). Tepe et al have also shown 
antioxidant activity of essential oil and various 
extracts of Nepeta flavida (12).  Sarahroodi et al 
have reported that aqueous extract of Nepeta 
menthoides has significant effect on memory 
retention and retrieval in mice (39). It has been 
reported that following a single intraperitoneal 
injection, fractions of flavonoids could be 
detected in the brains of rats, which indicates that 
the included flavonoids in the herb are able to 
cross the blood brain barrier in vivo (40). At the 
end, it can be concluded that the antioxidant and 
anti-inflammatory herb Nepeta menthoides 
through inhibiting apoptosis can act as a novel 
neuroprotectant in managing neurological 
conditions involving sensory neurons as well as 
motoneurons.      
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