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1. Introduction  
ajor depressive disorder (MDD) is 
one of the most prevalent forms of 
mental illness in humans, which its 
occurrence rate is 16.2% in the 
United States (1). The disorder is 
associated with high morbidity and 

risk of premature mortality (2) and is predicted to be 
the leading cause of disability in Western countries by 
2030 (3). Among patients with major depression, 75–
85% has recurrent episodes and 10–30% was 
incompletely recovered with tenacious residual 
depressive symptoms (4, 5). Stress-related psychiatric 
disorders, including major depression, have also been 
reported to be associated with alternation in 
hypothalamic–pituitary–adrenal (HPA) axis function. 
Indeed, the studies show that the abnormality in HPA 

axis function has a key role in depression incidence 
(6). Nowadays, the prevailing mechanisms for the 
development of therapeutic drugs are mostly based on 
“monoamine hypothesis” which suggests that the 
decrease in concentration of monoamine 
neurotransmitters plays the main  role in MDD (7). 
These drugs include selective serotonin reuptake 
inhibitors (SSRIs), tricyclics (TCAS) and inhibitors of 
degradation of neurotransmitters such as monoamine 
oxidase inhibitors (MAOIs) (8). However, a 
significant population of depressed patients (20% to 
30%) does not respond to these medications. This is 
somewhat due to our limited understanding of the 
precise neurobiological mechanisms associated with 
depression(9). Recent evidence suggests that the 
incidence of depression is caused by alterations in the 
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Abstract 
Background and Objective: Electroconvulsive therapy (ECT) is one of the effective and less complicated 
methods for treatment of depression in cases of resistance to common treatments. Given the fundamental role of 
pre-frontal cortex on changing the mood of depression-related behaviors in depressed patients, the effects of 
electroconvulsive therapy on enzymatic activity of this cortex were taken into account in this study.  

Materials and Methods: For this purpose, 42 male Wistar rats were divided into three control, depressed and 
ECT groups. To create depression, Chronic Unpredictable Mild Stress (CUMS) method was used. Finally, NO, 
MDA, GSH and SOD in prefrontal portion of the brain in three mentioned groups were measured  

Results: Our findings showed a non-significant increase of MDA (p>0.05) in both groups of depress and ECT in 
comparison with control. ECT caused a significant increase in contents of GSH and SOD in prefrontal cortex 
versus the group of control. Also, ECT significantly increased the level of nitrite as compared with control. 

Conclusion: Treatment of depression by ECT could increase the level of antioxidants in the depressed rats' brain 
and it may be considered as a treatment for moderate depression disorders. 
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complex signaling networks. These networks included 

of: monoamine neurotransmitter, neuroendocrine 

system, neurotropic factors, neurogenesis, immune 

system deficiency, and epigenetic modifications (10-

14). In concomitant,  electroconvulsive therapy (ECT) 

is a highly effective treatment for severe or resistant 

forms of depression (15). The ECT technique has been 

considerably advanced in the last 50 years (16). The 

reports showed that the rehabilitation with electro-

convulsion is an effective treatment for bipolar 

depression, but there are concerns about whether it 

causes long-term neurocognitive impairment (17). 

However, despite widespread usage of ECT, the exact 

neurobiological mechanisms underlying its efficacy 

are not fully understood. Over the past 3 decades, 

extensive work in rodents, primates, and humans has 

begun to delineate the impact of electroconvulsive 

seizures (ECS) and ECT on neurotransmission 

systems commonly implicated in depression (18). In 

the current study, we will focus and investigate the 

changes of oxidative stress indexes in the prefrontal 

cortex in depression rats using chronic unpredictable 

mild stress (CUMS) model. 

2. Materials and Methods 

2.1. Experimental groups and treatments 

Healthy male adult Wistar rats (n=42), weighting 

250–300 g, were maintained in a standard 

environment for one week acclimatization period 

before experiments. All of the experimental 

procedures were approved by the Ethical Committee 

of Shahed Medical University and carried out in 

accordance with National Institutes of Health Guide 

for the Care and Use of Laboratory Animals. Rats 

were randomly divided into three groups: 1- control 

group of healthy rats without any treatment (group C) 

and groups 2 and 3 were induced by CUMS to 

reproduce the rodent model of depression. 

2.2. CUMS modeling for induction of depression   

Chronic unpredictable mild stress (CUMS) 

procedure was adopted from a previous study with 

minor modifications. One randomly selected stressor 

stimulus among the panel used in this study was 

applied once daily to the rats in the CUMS-treated 

groups. The panel of stressor stimuli consisted of 1- 

swimming in cold water (4°C) for 5 minutes; 2- tail 

pinching for 1 minute; 3- food deprivation for 24 

hours; 4- water deprivation for 24 hours; 5- social 

crowding (24 rats per cage), with cage being tilted to 

30° from the horizontal plane for 24 hours; 6- shaking 

for 20 minutes (one shake per second); 7-continuous 

lighting for 24 h; 8- housing in a soiled cage for 24 h; 

9- heat stress (45°C) for 5 minutes; 10- undesirable 

confinement for 2 h. Stressor stimuli were 

administered three times within the 4 weeks, except 

for stressors 1 and 2 which were applied two times 

during 1 month (19). After that, (23
th

 day from start of 

CUMS), the rats of group 3 was treated with ECT for 

a period of 7 days. Finally, the brain of each rat was 

removed and homogenized and the separated 

supernatant was kept at -70C for biochemical assay. 

 2.3. Measurement of oxidant and anti-oxidant 

metabolites 

Malondialdehyde (MDA) 

The concentration of malondialdehyde (MDA) as a 

lipid peroxidation marker was calculated by 

measuring thiobarbituric acid reactive substances 

(TBARS) in the supernatant as described by Roghani 

et al. (20). Briefly, trichloroacetic acid and TBARS 

reagent were added to aliquots of the supernatant, 

which were subsequently mixed and incubated at 

100°C for 80 min. After cooling on ice, the samples 

were centrifuged at 1000×g for 10 min, and the 

absorbance of the supernatant was read at 532 nm. 

The results of TBARS measurements were expressed 

as MDA equivalents, using tetraethoxypropane as 

standard. 

Nitrite as NO metabolite 

Supernatant NO content was assayed by the Griess 

method. Since NO is a compound with a short half-life and 

is rapidly converted to the stable end products of nitrate 

(NO3-) and nitrite (NO2-), the principle of the assay is the 

conversion of nitrate into nitrite by cadmium and followed 

by color development with Griess reagent (sulfanilamide 

and n-naphthyl ethylenediamine) in acidic medium (21). The 

total nitrite was measured by Griess reaction. The 

absorbance was determined at 540 nm with a 

spectrophotometer (22). 

Superoxide dismutase (SOD) 

SOD activity measurement was according to our 

previous work (23). Briefly, supernatant was 

incubated with xanthine and xanthine oxidase in 

potassium phosphate buffer (pH 7.8, 37ºC) for 40 min 

and NBT was added. Blue formazan was then 

monitored spectrophotometrically at 550 nm. The 

amount of protein that inhibited NBT reduction to 

50% maximum was defined as 1 nitrite unit (NU) of 

SOD activity. 

Glutathione (GSH)  

Glutathione level in homogenized supernatant was 

measured with Ellman reagent at 412 nm.  

2.4. Data analysis 

Data were expressed as the mean ± standard error. 

Statistical analysis was performed using SPSS 

software program (version 13; SPSS, Chicago, IL, 

USA). The results were compared using an analysis of 
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variance (ANOVA). P-values <0.05 were considered 

significant. 

3. Results 

3.1. Prefrontal cortex MDA concentration 

As shown in figure 1, MDA was slightly and non-

significantly increased in depressed and ECT 

treatment animal groups as compared to control rats. 

 

Fig. 1. Prefrontal malondialdehyde (MDA) 

concentration in control and treatment animals. Bars 

show Mean±SEM. n = 14/group. 

3.2. Nitrite concentration of prefrontal cortex 

There was no significant differences in nitrite (NO) 

concentration between control and depression groups 

(Fig. 2), but in depression animals which treated with 

ECT, we found a marked elevation (1.75±0.21) in 

nitrite versus control (1.02±0.15) p < 0.05.  

 
Fig. 2.  Prefrontal nitrite concentration in control and 

treatment animals. Bars show Mean±SEM of nitrite 

concentration. n = 14/group. 

 

3.3. SOD activity in prefrontal cortex 

In depression animal group, SOD reduced from 

9.08±0.99 (in control rats) to 6.26±1.87, which was 

not significant. However, there was a significant 

elevation of SOD in ECT treated animals (18.18±1.97) 

with respect to control (6.26±1.87) rats (p < 0.05).  

 

Fig. 3.  Prefrontal SOD activity in control and 

treatment animals. Bars show Mean±SEM of SOD 

activity. n = 14/group. 

3.4. Glutathione (GSH) concentration of prefrontal 

cortex 

Evaluation of the prefrontal cortex GSH showed 

that there is a significant reduction in depression 

group GSH concentration (33.56±8.64) as compared 

to the control (63.54±7.26) animals. (p < 0.05). 

Though, treatment of the animals with ECT could 

antagonize the reduction effect of depression on GSH 

concentration to 118.22±10.32 value (p < 0.05). 

 

Fig. 4.  Prefrontal GSH concentration in control and 

treatment animals. Bars show Mean±SEM of GSH 

concentration. n = 14/group. 
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4. Discussion  

It is well established that neuroinflammation, 

oxidative stress and neuroendocrine disturbance have 

the main role in the pathogenesis of major depression 

(24). Reports show that excessive production of 

reactive oxidative stress (ROS) and decrement of 

antioxidants levels lead to cellular's protein, lipid, and 

DNA injury and subsequent cellular apoptosis. Many 

studies have indicated that GSH depletion leads to 

oxidative stress induction, mitochondrial complex I 

inhibition, ubiquitin–proteasome dysfunction and 

ultimately neuronal cell death (25, 26). In the study by 

Filho et al., it was reported that CUMS could decrease 

the level of non-protein thiol (NPSH) and increase 

reactive oxygen species (ROS). In response to these 

changes, glutathione reductase (GR), glutathione 

peroxidase (GPx) and catalase (CAT) activities were 

increased in mice exposed to CUMS (27). Other 

studies like JieCheng reports showed that the levels of 

prefrontal cortex pro-inflammatory cytokines such as 

interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor 

necrosis factor-1 (TNF-1) increases by CUMS. 

Moreover, many investigations illustrated an increase 

in lipid peroxidations such as malonaldehyde (MDA) 

and also a decrement level for antioxidant defense 

enzymes including superoxide dismutase (SOD) and 

glutathione peroxidase (GSH-Px)  following CUMS 

(24). However, Thakare finding revealed that the mice 

subjected to CUMS exhibited low levels of IL-6 and 

TNF-α which is concomitant with oxidant-antioxidant 

imbalance in the hippocampus and cerebral cortex 

(28). In another study by Lopresti, it was shown that 

in the depressed patients, MDA concentrations would 

be significantly increased as compared to healthy 

control persons (29). The nitric oxidative production 

disturbance i.e, high level of nitric oxide synthase 

activity was shown following depression (30). 

However, our investigation results are related to other 

mentioned reports. Chronic inflammation is conducted 

by several molecules which signaled by JAK/STAT 

transduction or microbial sensors such as Toll Like 

Receptor and absent in melanoma 2, and also (NLR) 

Node-like receptor. It seems that these molecules are 

involved in inflammatory cytokines production in 

patients with depression. Oxidative lipid damage was 

evident only in the frontal cortex than hippocampus, 

cerebellum and the pons/medulla region (31). We can 

guess the benefit protective anti-oxidant effects of 

ECT in frontal region could help to depressed patients 

to recover and reach to better border line for living. 
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