1.
Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - insights from amyloid-beta metabolism beyond the brain. Nature Reviews Neurology 2017;13(10):612-23.
2.
Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer's disease. Lancet 2016;388(10043):505-17.
3.
Reeta KH, Singh D, Gupta YK. Chronic treatment with taurine after intracerebroventricular streptozotocin injection improves cognitive dysfunction in rats by modulating oxidative stress, cholinergic functions and neuroinflammation. Neurochemistry International 2017;108:146-56.
4.
Chen D. Neuroprotective effect of amorphophallus campanulatus in stz induced alzheimer rat model. African Journal of Traditional, Complementary, and Alternative Medicines 2016;13(4):47-54.
5.
Reeta KH, Singh D, Gupta YK. Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats. European Journal of Neuroscience 2017;45(7):987-97.
6.
de Oliveira JS, Abdalla FH, Dornelles GL, Adefegha SA, Palma TV, Signor C, et al. Berberine protects against memory impairment and anxiogenic-like behavior in rats submitted to sporadic Alzheimer's-like dementia: Involvement of acetylcholinesterase and cell death. NeuroToxicology 2016;57:241-50.
7.
Grieb P. Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer's Disease: in Search of a Relevant Mechanism. Molecular Neurobiology 2016;53(3):1741-52.
8.
Sorial ME, El Sayed N. Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer's disease mouse model: possible involvement of the cholinergic system. Naunyn-Schmiedeberg's Archives of Pharmacology 2017;390(6):581-93.
9.
Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Jo TH, et al. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. European Journal of Pharmacology 2010;649(1-3):210-7.
10. Stefanello N, Schmatz R, Pereira LB, Rubin MA, da Rocha JB, Facco G, et al. Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats. Molecular and Cellular Biochemistry 2014;388(1-2):277-86.
11.
Santana-Galvez J, Cisneros-Zevallos L, Jacobo-Velazquez DA. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules 2017;22(3).
12.
Heitman E, Ingram DK. Cognitive and neuroprotective effects of chlorogenic acid. Nutritional Neuroscience 2017;20(1):32-9.
13.
Baluchnejadmojarad T, Roghani M. Effect of naringenin on intracerebroventricular streptozotocin-induced cognitive deficits in rat: a behavioral analysis. Pharmacology 2006;78(4):193-7.
14.
Balmus IM, Lefter R, Ciobica A, Antioch I, Ababei D, Dobrin R. Preliminary Data on Some Behavioral Changes Induced by Short-Term Intraperitoneal Oxytocin Administration in Aged Rats. Psychiatria Danubina 2018;30(1):91-8.
15.
Ellman GL, Courtney KD, Andres V, Jr., Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 1961;7:88-95.
16.
Jang YJ, Kim J, Shim J, Kim CY, Jang JH, Lee KW, et al. Decaffeinated coffee prevents scopolamine-induced memory impairment in rats. Behavioral Brain Research 2013;245:113-9.
17.
Kumar M, Kaur D, Bansal N. Caffeic Acid Phenethyl Ester (CAPE) Prevents Development of STZ-ICV Induced dementia in Rats. Pharmacognosy Magazine 2017;13(Suppl 1):S10-s5.