Therapeutic effect of glibenclamide and sertraline combination on serum level of lipids and glucose in type 2 diabetic rats

Document Type : Research Paper


1 Physiology Department, School of Medicine, Shahed University, Tehran, Iran

2 Department of Physiology, School of Medicine, Tarbiyat Modares University, Tehran, Iran


Background and Objective: Sertraline-lowering effects on blood sugar have been observed in many studies. Nowadays, glibenclamide is widely used in the treatment of diabetes. The aim of this study was to evaluate the therapeutic effect of the combination of sertraline and glibenclamide on serum glucose and lipids in type 2 diabetic rats.
Materials and Methods: In this study, 32 male rats were divided into four groups: diabetic, diabetic treated with glibenclamide, sertraline, combination of glibenclamide and sertraline. The drug dose of glibenclamide was 0.258 mg/kg and sertraline 30 mg/kg and the combined therapeutic dose was 50% of the previous doses. Diabetes was induced by a single dose of 60 mg/kg streptozotocin. Treatment was continued until day 16 after diabetes induction. Serum glucose levels were measured on days 4, 9 and 16.  
Results: The present study showed that combination of glibenclamide and sertraline with 50% of treatment dose significantly decreased serum glucose on days 9 and 16. Sertraline alone significantly decreased serum glucose compared to the control group on day 16 (P <0.05). A significant increase in HDL and HDL to LDL ratio was observed in the two groups (P <0.05), but these changes were not observed in the glibenclamide group alone.
Conclusion: Combined treatment with glibenclamide and sertraline improved control of serum glucose and increased HDL and could lead to significant changes in serum glucose and lipid concentrations in diabetic rats.


 Al-Kuraishy, H. M., Al-Gareeb, A. I., Waheed, H. J., & Al-Maiahy, T. J. Differential effect of metformin and/or glyburide on apelin serum levels in patients with type 2 diabetes mellitus: Concepts and clinical practice. Journal of Advanced Pharmaceutical Technology & Research 2018; 9(3): 80–86.
Olguner Eker, Ö. Özsoy, S., Eker, B., & Doğan, H. (2017). Metabolic Effects of Antidepressant Treatment. Noro Psikiyatri Arsivi 2017; 54(1): 49–56.
Ng D. S. Diabetic dyslipidemia: from evolving pathophysiological insight to emerging therapeutic targets. Canadian Journal of Diabetes 2013; 37(5): 319–326.
ElBatsh M. M. Antidepressant-like effect of simvastatin in diabetic rats. Canadian Journal of Physiology and Pharmacology 2015; 93(8): 649–656.
El-Marasy, S. A. Abdallah, H. M., El-Shenawy, S. M., El-Khatib, A. S., El-Shabrawy, O. A., & Kenawy, S. A. . Anti-depressant effect of hesperidin in diabetic rats. Canadian Journal of Physiology and Pharmacology 2014; 92(11): 945–952.
Rachdi, C., Damak, R., Fekih Romdhane, F., Ouertani, H., & Cheour, M. Impact of sertraline on weight, waist circumference and glycemic control: A prospective clinical trial on depressive diabetic type 2 patients. Primary Care Diabetes 2019; 13(1): 57–62.
Clemens, K. K., McArthur, E., Dixon, S. N., Fleet, J. L., Hramiak, I., & Garg, A. X. The hypoglycemic risk of glyburide (glibenclamide) compared with modified-release gliclazide. Canadian Journal of Diabetes 2015; 39 Suppl 4: 32–40.
Barnard, K., Peveler, R. C., & Holt, R. I. (2013). Antidepressant medication as a risk factor for type 2 diabetes and impaired glucose regulation: systematic review. Diabetes Care 2013; 36(10): 3337–3345.
Roopan, S., & Larsen, E. R. (2017). Use of antidepressants in patients with depression and comorbid diabetes mellitus: a systematic review. Acta Neuropsychiatrica 2017; 29(3); 127–139.
Lustman, P. J., Clouse, R. E., Nix, B. D., Freedland, K. E., Rubin, E. H., McGill, J. B., Williams, M. M., Gelenberg, A. J., Ciechanowski, P. S., & Hirsch, I. B. Sertraline for prevention of depression recurrence in diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Archives of General Psychiatry 2006; 63(5): 521–529.
Ahmadi, A., Khalili, M., Margedari, S. h., & Nahri-Niknafs, B. The Effects of Solvent Polarity on Hypoglycemic and Hypolipidemic Activities of Securigera Securidaca (L.) Seeds. Drug Research 2016; 66(3): 130–135.
Latha, R. C., & Daisy, P. Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. In streptozotocin-induced diabetic rats. Chemico-biological Interactions 2011; 189(1-2): 112–118.
Ahmadi, A., Khalili, M., Seyedhoseyni, S., Roudsari, E. M., & Nahri-Niknafs, B. Synthesis, antidiabetic and hypolipidemic activities of new diethylamine and triethoxysilyl derivatives of tolbutamide on rats. Medicinal Chemistry 2012; 8(5): 964–969.
Pollak, P. T., Mukherjee, S. D., & Fraser, A. D. Sertraline-induced hypoglycemia. The Annals of Pharmacotherapy 2001; 35(11):1371–1374.
Takhar, J., & Williamson, P. Hypoglycemia associated with high doses of sertraline and sulphonylurea compound in a noninsulin-dependent diabetes mellitus patient. The Canadian journal of Clinical Pharmacology 1999; 6(1): 12–14.
Shuster, D. L., Risler, L. J., Prasad, B., Calamia, J. C., Voellinger, J. L., Kelly, E. J., Unadkat, J. D., Hebert, M. F., Shen, D. D., Thummel, K. E., & Mao, Q. Identification of CYP3A7 for glyburide metabolism in human fetal livers. Biochemical Pharmacology 2014; 92(4): 690–700.
Preskorn, S. H., Greenblatt, D. J., Flockhart, D., Luo, Y., Perloff, E. S., Harmatz, J. S., Baker, B., Klick-Davis, A., Desta, Z., & Burt, T. Comparison of duloxetine, escitalopram, and sertraline effects on cytochrome P450 2D6 function in healthy volunteers. Journal of Clinical Psychopharmacology 2007; 27(1), 28–34.
Juan, D., Molitch, M. E., Johnson, M. K., Carlson, R. F., & Antal, E. J. (1990). Unaltered drug metabolizing enzyme systems in type II diabetes mellitus before and during glyburide therapy. Journal of Clinical Pharmacology 1990; 30(10): 943–947.
Chi, T. C., Ho, Y. J., Chen, W. P., Chi, T. L., Lee, S. S., Cheng, J. T., & Su, M. J. Serotonin enhances beta-endorphin secretion to lower plasma glucose in streptozotocin-induced diabetic rats. Life Sciences 2007; 80(20): 1832–1838.
Bymaster, F. P., Zhang, W., Carter, P. A., Shaw, J., Chernet, E., Phebus, L., Wong, D. T., & Perry, K. W. Fluoxetine, but not other selective serotonin uptake inhibitors, increases norepinephrine and dopamine extracellular levels in prefrontal cortex. Psychopharmacology 2002; 160(4): 353–361.
Katzung B TA, Masters S. Katzumg & Trevor’s Pharmacology Examination and Board Review. Katzumg & Trevor’s Pharmacology Examination and Board Review. McGraw Hill Professional 2008; 250-3.
Sumara, G., Sumara, O., Kim, J. K., & Karsenty, G.. Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metabolism 2012; 16(5): 588–600.
Garland, M. R., Hallahan, B., McNamara, M., Carney, P. A., Grimes, H., Hibbeln, J. R., Harkin, A., & Conroy, R. M. Lipids and essential fatty acids in patients presenting with self-harm. The British Journal of Psychiatry: The Journal of Mental Science 2007; 190: 112–117.
Steegmans, P. H., Fekkes, D., Hoes, A. W., Bak, A. A., van der Does, E., & Grobbee, D. E. Low serum cholesterol concentration and serotonin metabolism in men. British Medical Journal 1996; 312(7025): 221.
Rozzini, R., Bertozzi, B., Barbisoni, P., & Trabucchi, M. Low serum cholesterol and serotonin metabolism. Risk of depression is higher in elderly patients with lowest serum cholesterol values. British Medical Journal 1996; 312(7041): 1298–1299.
Ban, Y., Watanabe, T., Miyazaki, A., Nakano, Y., Tobe, T., Idei, T., Iguchi, T., Ban, Y., & Katagiri, T. Impact of increased plasma serotonin levels and carotid atherosclerosis on vascular dementia. Atherosclerosis 2007; 195(1): 153–159.
Lara, N., Baker, G. B., Archer, S. L., & Le Mellédo, J. M. Increased cholesterol levels during paroxetine administration in healthy men. The Journal of clinical Psychiatry 2003; 64(12): 1455–1459.
Buydens-Branchey, L., Branchey, M., Hudson, J., & Fergeson, P. Low HDL cholesterol, aggression and altered central serotonergic activity. Psychiatry Research 2000; 93(2): 93–102.
Kortz, W. J., Schirmer, B. D., Nashold, J. R., Jones, R. S., & Meyers, W. C. Effects of serotonin on canine bile formation. Surgery 1985; 98(5): 907–913.
Chan, A. K., & von der Weid, P. Y. 5-HT decreases contractile and electrical activities in lymphatic vessels of the guinea-pig mesentery: role of 5-HT 7-receptors. British Journal of Pharmacology 2013; 139(2): 243–254.